Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3602, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684700

RESUMEN

Glioblastoma (GBM) is a highly lethal type of cancer. GBM recurrence following chemoradiation is typically attributed to the regrowth of invasive and resistant cells. Therefore, there is a pressing need to gain a deeper understanding of the mechanisms underlying GBM resistance to chemoradiation and its ability to infiltrate. Using a combination of transcriptomic, proteomic, and phosphoproteomic analyses, longitudinal imaging, organotypic cultures, functional assays, animal studies, and clinical data analyses, we demonstrate that chemoradiation and brain vasculature induce cell transition to a functional state named VC-Resist (vessel co-opting and resistant cell state). This cell state is midway along the transcriptomic axis between proneural and mesenchymal GBM cells and is closer to the AC/MES1-like state. VC-Resist GBM cells are highly vessel co-opting, allowing significant infiltration into the surrounding brain tissue and homing to the perivascular niche, which in turn induces even more VC-Resist transition. The molecular and functional characteristics of this FGFR1-YAP1-dependent GBM cell state, including resistance to DNA damage, enrichment in the G2M phase, and induction of senescence/stemness pathways, contribute to its enhanced resistance to chemoradiation. These findings demonstrate how vessel co-option, perivascular niche, and GBM cell plasticity jointly drive resistance to therapy during GBM recurrence.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Ratones , Quimioradioterapia/métodos , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Tolerancia a Radiación , Proteínas Señalizadoras YAP/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Proteómica
2.
Nat Comput Sci ; 4(2): 128-143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38374363

RESUMEN

Identifying true DNA cellular barcodes among polymerase chain reaction and sequencing errors is challenging. Current tools are restricted in the diversity of barcode types supported or the analysis strategies implemented. As such, there is a need for more versatile and efficient tools for barcode extraction, as well as for tools to investigate which factors impact barcode detection and which filtering strategies to best apply. Here we introduce the package CellBarcode and its barcode simulation kit, CellBarcodeSim, that allows efficient and versatile barcode extraction and filtering for a range of barcode types from bulk or single-cell sequencing data using a variety of filtering strategies. Using the barcode simulation kit and biological data, we explore the technical and biological factors influencing barcode identification and provide a decision tree on how to optimize barcode identification for different barcode settings. We believe that CellBarcode and CellBarcodeSim have the capability to enhance the reproducibility and interpretation of barcode results across studies.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Reacción en Cadena de la Polimerasa
3.
Neurooncol Adv ; 5(1): vdad095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781087

RESUMEN

Background: Medulloblastoma is the most common malignant pediatric brain tumor, and leptomeningeal dissemination (LMD) of medulloblastoma both portends a poorer prognosis at diagnosis and is incurable at recurrence. The biological mechanisms underlying LMD are unclear. The Abelson (ABL) tyrosine kinase family members, ABL1 and ABL2, have been implicated in cancer cell migration, invasion, adhesion, metastasis, and chemotherapy resistance, and are upstream mediators of the oncogene c-MYC in fibroblasts and lung cancer cells. However, their role in medulloblastoma has not yet been explored. The purpose of this work was to elucidate the role of ABL1/2 in medulloblastoma LMD. Methods: ABL1 and ABL2 mRNA expression of patient specimens was analyzed. shRNA knockdowns of ABL1/2 and pharmacologic inhibition of ABL1/2 were used for in vitro and in vivo analyses of medulloblastoma LMD. RNA sequencing of ABL1/2 genetic knockdown versus scrambled control medulloblastoma was completed. Results: ABL1/2 mRNA is highly expressed in human medulloblastoma and pharmacologic inhibition of ABL kinases resulted in cytotoxicity. Knockdown of ABL1/2 resulted in decreased adhesion of medulloblastoma cells to the extracellular matrix protein, vitronectin (P = .0013), and significantly decreased tumor burden in a mouse model of medulloblastoma LMD with improved overall survival (P = .0044). Furthermore, both pharmacologic inhibition of ABL1/2 and ABL1/2 knockdown resulted in decreased expression of c-MYC, identifying a putative signaling pathway, and genes/pathways related to oncogenesis and neurodevelopment were differentially expressed between ABL1/2 knockdown and control medulloblastoma cells. Conclusions: ABL1 and ABL2 have potential roles in medulloblastoma LMD upstream of c-MYC expression.

4.
Clin. transl. oncol. (Print) ; 25(3): 696-705, mar. 2023.
Artículo en Inglés | IBECS | ID: ibc-216428

RESUMEN

Background Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. Methods PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. Results and Discussion PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. Conclusions CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155 (AU)


Asunto(s)
Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Poliovirus , ARN Mensajero/metabolismo
5.
Clin Transl Oncol ; 25(3): 696-705, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36301489

RESUMEN

BACKGROUND: Medulloblastoma is the most common pediatric malignant brain tumor, consisting of four molecular subgroups (WNT, SHH, Group 3, Group 4) and 12 subtypes. Expression of the cell surface poliovirus receptor (PVR), CD155, is necessary for entry of the viral immunotherapeutic agent, PVSRIPO, a polio:rhinovirus chimera. CD155, physiologically expressed in the mononuclear phagocytic system, is widely expressed ectopically in solid tumors. The objective of this study is to elucidate CD155 expression as both a receptor for PVSRIPO and a therapeutic target in medulloblastoma. METHODS: PVR mRNA expression was determined in several patient cohorts and human medulloblastoma cell lines. Patient samples were also analyzed for CD155 expression using immunohistochemistry and cell lines were analyzed using Western Blots. CD155 was blocked using a monoclonal antibody and cell viability, invasion, and migration were assessed. RESULTS AND DISCUSSION: PVR mRNA expression was highest in the WNT subgroup and lowest in Group 4. PVR expression in the subgroups of medulloblastoma were similar to other pediatric brain and non-brain tumors. PVR expression was largely not associated with subgroup or subtype. Neither PVR protein expression intensity nor frequency were associated with overall survival. PVR expression was elevated in Group 3 patients with metastases but there was no difference in paired primary and metastatic medulloblastoma. Blocking PVR resulted in dose-dependent cell death, decreased invasion in vitro, and modestly inhibited cell migration. CONCLUSIONS: CD155 is expressed across medulloblastoma subgroups and subtypes. Blocking CD155 results in cell death and decreased cellular invasion. This study provides rationale for CD155-targeting agents including PVSRIPO and antibody-mediated blockade of CD155.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , Poliovirus , Humanos , Niño , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Poliovirus/metabolismo , ARN Mensajero/metabolismo
6.
iScience ; 25(10): 105118, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36185361

RESUMEN

Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material from donor to recipient cells. EVs play key roles in glioblastoma progression because glioblastoma stem-like cells (GSCs) release pro-oncogenic, pro-angiogenic, and pro-inflammatory EVs. However, the molecular basis of EV release remains poorly understood. Here, we report the identification of the pseudokinase MLKL, a crucial effector of cell death by necroptosis, as a regulator of the constitutive secretion of EVs in GSCs. We find that genetic, protein, and pharmacological targeting of MLKL alters intracellular trafficking and EV release, and reduces GSC expansion. Nevertheless, this function ascribed to MLKL appears independent of its role during necroptosis. In vivo, pharmacological inhibition of MLKL reduces the tumor burden and the level of plasmatic EVs. This work highlights the necroptosis-independent role of MLKL in vesicle release and suggests that interfering with EVs is a promising therapeutic option to sensitize glioblastoma cells.

7.
Pathol Res Pract ; 236: 153958, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35679752

RESUMEN

Cancer metastasis accounts for the majority of cancer motility burden. For colorectal cancer (CRC), the liver is the most common site of distant metastasis. It is still little known that cancer genomic mutations, which are a cell-intrinsic and heritable property, are enriched in CRC liver metastasis. Here, we try to answer the question in the context of polyclonal seeding. In this study, we sequenced 18 pairs of colorectal cancer primary tumors and their matched liver metastasis samples. Together with public available sequencing data, we compared the mutations in 113 primary and metastasis pairs. The TP53 mutation variant allele frequency (VAF) was significantly increased in metastasis compared to the paired primary tumor, although most of the frequently observed mutations in liver metastasis foci were concordant with their matched CRC primary tumors. The results support late metastasis and polyclonal seeding. Consequently, we quantitatively compared the intratumor heterogeneity (ITH) between primary and metastasis tumors, and with the help of in silico metastasis simulation, we inferred that more than 10 cells take part in the CRC liver metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Proteína p53 Supresora de Tumor , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Frecuencia de los Genes , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Mutación , Proteína p53 Supresora de Tumor/genética
8.
Nat Genet ; 54(4): 459-468, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35410383

RESUMEN

The persistence of cancer cells resistant to therapy remains a major clinical challenge. In triple-negative breast cancer, resistance to chemotherapy results in the highest recurrence risk among breast cancer subtypes. The drug-tolerant state seems largely defined by nongenetic features, but the underlying mechanisms are poorly understood. Here, by monitoring epigenomes, transcriptomes and lineages with single-cell resolution, we show that the repressive histone mark H3K27me3 (trimethylation of histone H3 at lysine 27) regulates cell fate at the onset of chemotherapy. We report that a persister expression program is primed with both H3K4me3 (trimethylation of histone H3 at lysine 4) and H3K27me3 in unchallenged cells, with H3K27me3 being the lock to its transcriptional activation. We further demonstrate that depleting H3K27me3 enhances the potential of cancer cells to tolerate chemotherapy. Conversely, preventing H3K27me3 demethylation simultaneously to chemotherapy inhibits the transition to a drug-tolerant state, and delays tumor recurrence in vivo. Our results highlight how chromatin landscapes shape the potential of cancer cells to respond to initial therapy.


Asunto(s)
Resistencia a Antineoplásicos , Histonas , Neoplasias de la Mama Triple Negativas , Resistencia a Antineoplásicos/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Recurrencia Local de Neoplasia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética
9.
Elife ; 112022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166672

RESUMEN

The cytokine erythropoietin (EPO) is a potent inducer of erythrocyte development and one of the most prescribed biopharmaceuticals. The action of EPO on erythroid progenitor cells is well established, but its direct action on hematopoietic stem and progenitor cells (HSPCs) is still debated. Here, using cellular barcoding, we traced the differentiation of hundreds of single murine HSPCs, after ex vivo EPO exposure and transplantation, in five different hematopoietic cell lineages, and observed the transient occurrence of high-output myeloid-erythroid-megakaryocyte-biased and myeloid-B-cell-dendritic cell-biased clones. Single-cell RNA sequencing analysis of ex vivo EPO-exposed HSPCs revealed that EPO induced the upregulation of erythroid associated genes in a subset of HSPCs, overlapping with multipotent progenitor (MPP) 1 and MPP2. Transplantation of barcoded EPO-exposed MPP2 confirmed their enrichment in myeloid-erythroid-biased clones. Collectively, our data show that EPO does act directly on MPP independent of the niche and modulates fate by remodeling the clonal composition of the MPP pool.


Asunto(s)
Eritropoyetina , Células Madre Hematopoyéticas , Animales , Diferenciación Celular , Eritropoyesis/fisiología , Eritropoyetina/genética , Eritropoyetina/farmacología , Ratones , Células Madre Multipotentes
10.
Blood ; 137(14): 1862-1870, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512426

RESUMEN

Clonal evolution, the process of expansion and diversification of mutated cells, plays an important role in cancer development, resistance, and relapse. Although clonal evolution is most often conceived of as driven by natural selection, recent studies uncovered that neutral evolution shapes clonal evolution in a significant proportion of solid cancers. In hematological malignancies, the interplay between neutral evolution and natural selection is also disputed. Because natural selection selects cells with a greater fitness, providing a growth advantage to some cells relative to others, the architecture of clonal evolution serves as indirect evidence to distinguish natural selection from neutral evolution and has been associated with different prognoses for the patient. Linear architecture, when the new mutant clone grows within the previous one, is characteristic of hematological malignancies and is typically interpreted as being driven by natural selection. Here, we discuss the role of natural selection and neutral evolution in the production of linear clonal architectures in hematological malignancies. Although it is tempting to attribute linear evolution to natural selection, we argue that a lower number of contributing stem cells accompanied by genetic drift can also result in a linear pattern of evolution, as illustrated by simulations of clonal evolution in hematopoietic stem cells. The number of stem cells contributing to long-term clonal evolution is not known in the pathological context, and we advocate that estimating these numbers in the context of cancer and aging is crucial to parsing out neutral evolution from natural selection, 2 processes that require different therapeutic strategies.


Asunto(s)
Evolución Clonal , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas/patología , Células Madre Neoplásicas/patología , Flujo Genético , Neoplasias Hematológicas/genética , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Humanos , Recurrencia Local de Neoplasia , Células Madre Neoplásicas/metabolismo , Selección Genética
11.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2291-2301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32386163

RESUMEN

Due to the imperfect fidelity of DNA replication, somatic cells acquire DNA mutations at each division which record their lineage history. Microsatellites, tandem repeats of DNA nucleotide motifs, mutate more frequently than other genomic regions and by observing microsatellite lengths in single cells and implementing suitable inference procedures, the cell lineage tree of an organism can be reconstructed. Due to recent advances in single cell Next Generation Sequencing (NGS) and the phylogenetic methods used to infer lineage trees, this work investigates which computational approaches best exploit the lineage information found in single cell NGS data. We simulated trees representing cell division with mutating microsatellites, and tested a range of available phylogenetic algorithms to reconstruct cell lineage. We found that distance-based approaches are fast and accurate with fully observed data. However, Maximum Parsimony and the computationally intensive probabilistic methods are more robust to missing data and therefore better suited to reconstructing cell lineage from NGS datasets. We also investigated how robust reconstruction algorithms are to different tree topologies and mutation generation models. Our results show that the flexibility of Maximum Parsimony and the probabilistic approaches mean they can be adapted to allow good reconstruction across a range of biologically relevant scenarios.


Asunto(s)
Linaje de la Célula/genética , Biología Computacional/métodos , Repeticiones de Microsatélite/genética , Filogenia , Algoritmos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Mutación , Análisis de Secuencia de ADN , Análisis de la Célula Individual
12.
Exp Hematol ; 68: 15-20, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30448259

RESUMEN

International experts from multiple disciplines gathered at Homerton College in Cambridge, UK from September 12-14, 2018 to consider recent advances and emerging opportunities in the clonal tracking of hematopoiesis in one of a series of StemCellMathLab workshops. The group included 35 participants with experience in the fields of theoretical and experimental aspects of clonal tracking, and ranged from doctoral students to senior professors. Data from a variety of model systems and from clinical gene therapy trials were discussed, along with strategies for data analysis and sharing and challenges arising due to underlying assumptions in data interpretation and communication. Recognizing the power of this technology underpinned a group consensus of a need for improved mechanisms for sharing data and analytical protocols to maintain reproducibility and rigor in its application to complex tissues.


Asunto(s)
Rastreo Celular/métodos , Células Clonales/citología , Código de Barras del ADN Taxonómico , Linaje de la Célula , Separación Celular/métodos , Ensayos Clínicos como Asunto , Código de Barras del ADN Taxonómico/métodos , Código de Barras del ADN Taxonómico/normas , Elementos Transponibles de ADN , Presentación de Datos/normas , Predicción , Marcadores Genéticos , Terapia Genética , Guías como Asunto , Hematopoyesis , Modelos Biológicos , Mosaicismo , Reproducibilidad de los Resultados , Proyectos de Investigación , Células Madre/citología , Integración Viral/genética
13.
PLoS One ; 12(12): e0189586, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261712

RESUMEN

Liver transplantation is the definitive treatment of liver failure but donor organ shortage limits its availability. Stem cells are highly expandable and have the potential to differentiate into any specialist cell. Use of patient-derived induced Pluripotent Stem Cells (hiPSCs) has the additional advantage for organ regeneration therapies by removing the need for immunosuppression. We compared hepatocyte differentiation of human embryonic stem cells (hESCs) and hiPSCs in a mouse decellularised liver scaffold (3D) with standard in vitro protocol (2D). Mouse livers were decellularised preserving micro-architecture, blood vessel network and extracellular matrix. hESCs and hiPSCs were primed towards the definitive endoderm. Cells were then seeded either in 3D or 2D cultures and the hepatocyte differentiation was continued. Both hESCs and hiPSCs differentiated more efficiently in 3D than in 2D, with higher and earlier expression of mature hepatocyte marker albumin, lipid and glycogen synthesis associated with a decrease in expression of fetal hepatocyte marker alpha-fetoprotein. Thus we conclude that stem cell hepatocyte differentiation in 3D culture promotes faster cell maturation. This finding suggests that optimised 3D protocols could allow generation of mature liver cells not achieved so far in standard 2D conditions and lead to improvement in cell models of liver disease and regenerative medicine applications.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/citología , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Andamios del Tejido , Animales , Matriz Extracelular , Humanos , Ratones
14.
J Hepatol ; 66(5): 1001-1011, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28082148

RESUMEN

BACKGROUND & AIMS: In the normal liver, hepatocytes form a uniquely polarised cell layer that enables movement of solutes from sinusoidal blood to canalicular bile. Whilst several cholestatic liver diseases with defects of hepatocyte polarity have been identified, the molecular mechanisms of pathogenesis are not well defined. One example is arthrogryposis, renal dysfunction and cholestasis syndrome, which in most patients is caused by VPS33B mutations. VPS33B is a protein involved in membrane trafficking that interacts with RAB11A at recycling endosomes. To understand the pathways that regulate hepatocyte polarity better, we investigated VPS33B deficiency using a novel mouse model with a liver-specific Vps33b deletion. METHODS: To assess functional polarity, plasma and bile samples were collected from Vps33b liver knockout (Vps33bfl/fl-AlfpCre) and control (Vps33bfl/fl) mice; bile components or injected substrates were quantitated by mass spectrometry or fluorometry. For structural analysis, livers underwent light and transmission electron microscopy. Apical membrane and tight junction protein localisation was assessed by immunostaining. Adeno-associated virus vectors were used for in vivo gene rescue experiments. RESULTS: Like patients, Vps33bfl/fl-AlfpCre mice showed mislocalisation of ATP-binding cassette proteins that are specifically trafficked to the apical membrane via Rab11a-positive recycling endosomes. This was associated with retention of bile components in blood. Loss of functional tight junction integrity and depletion of apical microvilli were seen in knockout animals. Gene transfer partially rescued these defects. CONCLUSIONS: Vps33b has a key role in establishing structural and functional aspects of hepatocyte polarity and may be a target for gene replacement therapy. LAY SUMMARY: Hepatocytes are liver cells with tops and bottoms; that is, they are polarised. At their bottoms they absorb substances from blood. They then, at their tops, secrete these substances and their metabolites into bile. When polarity is lost, this directional flow of substances from blood to bile is disrupted and liver disease follows. In this study, using a new mouse model with a liver-specific mutation of Vps33b, the mouse version of a gene that is mutated in most patients with arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, we investigated how the Vps33b gene product contributes to establishing hepatocyte polarity. We identified in these mice abnormalities similar to those in children with ARC syndrome. Gene transfer could partly reverse the mouse abnormalities. Our work contributes to the understanding of VPS33B disease and hepatocyte polarity in general, and may point towards gene transfer mediated treatment of ARC liver disease.


Asunto(s)
Polaridad Celular , Hepatocitos/fisiología , Proteínas de Transporte Vesicular/fisiología , Animales , Artrogriposis/patología , Artrogriposis/terapia , Ácidos y Sales Biliares/sangre , Colestasis/patología , Colestasis/terapia , Colesterol/sangre , Terapia Genética , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Mutación , Insuficiencia Renal/patología , Insuficiencia Renal/terapia , Uniones Estrechas/fisiología , Proteínas de Transporte Vesicular/genética
15.
Nat Commun ; 7: 12111, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435297

RESUMEN

Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues.


Asunto(s)
Colágeno/metabolismo , Aparato de Golgi/metabolismo , Homeostasis , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Animales , Artrogriposis/metabolismo , Artrogriposis/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Aparato de Golgi/ultraestructura , Células HEK293 , Humanos , Ratones , Fenotipo , Unión Proteica , Transporte de Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...